Territorial control in civil wars: Theory and measurement using machine learning

Therese Anders

Ph.D. Candidate, University of Southern California

27 April 2019

New Faces in Political Methodology XI, Penn State University

Symmetric conflict - Ukraine

Symmetric conflict - Ukraine

Asymmetric conflict - Nigeria

Question

How can we measure changes in territorial control across space and time?

Question

How can we measure changes in territorial control across space and time?

Argument

We can estimate territorial control leveraging variation rebel tactics.

Question

How can we measure changes in territorial control across space and time?

Argument

We can estimate territorial control leveraging variation rebel tactics.

Contribution

- Measurement model for rebel tactics.
- Hidden Markov Model (HMM) estimates of territorial control.

Model of territorial control & rebel tactics

Model of territorial control & rebel tacticsMeasuring conflict exposure

- Model of territorial control & rebel tactics
- Measuring conflict exposure
- Hidden Markov Model (HMM)

- Model of territorial control & rebel tactics
- Measuring conflict exposure
- Hidden Markov Model (HMM)
- HMM estimates & validation
 - Nigeria
 - Colombia

Territorial control influences tactical choices in civil wars. [Carter 2015, de la Calle and Sánchez-Cuenca 2015, 2012]

= 200

Higher rebel control

\implies Conventional tactics

Higher rebel control

 \implies Conventional tactics

Lower rebel control

\implies Terrorist attacks

글 > < 글 > 글

Co-occurrence of conventional and terrorist tactics

Event locations in Nigeria 2014

Co-occurrence of conventional and terrorist tactics

VCo-occurrence of conventional and terrorist tactics

Event locations in Nigeria 2014

Co-occurrence of conventional and terrorist tactics

Event locations in Nigeria 2014

Continuum of territorial control

∃ → < ∃</p>

-

∃ >

-

= 200

= 200

-

$$egin{array}{l} {\it Tactics}_{it} = \{{\sf A}, {\sf B}, {\sf C}, {\sf D}\} \ = f\left({\sf E}_{it}^{[{\it T}]}, {\sf E}_{it}^{[{\it C}]}
ight) \end{array}$$

 $E_{it}^{[T]}$ area *i*'s exposure to terrorist events at *t* $E_{it}^{[C]}$ area *i*'s exposure to conventional events at *t*

ъ

Unit of observation: cell-month C_{it}

Unit of observation: cell-month C_{it}

a) Spatial distance d_{ij} in km, temporal distance (age) a_{jt} in months.

Unit of observation: cell-month C_{it}

a) Spatial distance d_{ij} in km, temporal distance (age) a_{jt} in months.

b) Logistic weights $w_{d_{ii}}$ and $w_{a_{it}}$

$$w_{d_{ij}} = rac{1}{1+e^{-7+0.35d_{ij}}} \ w_{a_{jt}} = rac{1}{1+e^{-8+2.5a_{jt}}}$$

Unit of observation: cell-month C_{it}

a) Spatial distance d_{ij} in km, temporal distance (age) a_{jt} in months.

b) Logistic weights $w_{d_{ii}}$ and $w_{a_{it}}$

$$w_{d_{ij}} = rac{1}{1+e^{-7+0.35d_{ij}}} \ w_{a_{jt}} = rac{1}{1+e^{-8+2.5a_{jt}}}$$

c) Exposure E

$$E_{it} = \sum_{j=1}^{J} \left(w_{d_{ij}} \times w_{a_{tm}}
ight)$$

Logistic decay functions

$$f(d) = \frac{1}{1 + e^{-\kappa + \lambda d}}$$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ • • • • • •

A ►

Continuous assignment

Continuous assignment

Reduce MAUP

Continuous assignment

- Reduce MAUP
- Spatial dependency in HMM

Hidden Markov Model

A ►

Hidden Markov Model

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

Hidden Markov Model

A ►

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○

HMM estimates for Nigeria

[Discrete monthly-level estimates averaged for each year, N = 942]

HMM estimates for Nigeria

[Discrete monthly-level estimates averaged for each year, N = 942]

-

Validation

HMM estimates

ACLED validation data

-

-

Validation

HMM estimates

ACLED validation data

Therese Anders Territorial control in civil wars

HMM estimates for Colombia

[Discrete monthly-level estimates averaged for each year, $\mathsf{N}=\mathsf{851}]$

< E > < E > .

三日 のへで

HMM estimates for Colombia 2015 vs. 2015

3

1= nac

∃ ► < ∃ ►</p>

Therese Anders

Therese Anders

Therese Anders

Therese Anders

Therese Anders

Therese Anders

Hypothesis

Rebel-controlled areas have a higher probability of deforestation post-peace than government-controlled areas.

Therese Anders

 $Deforest_{i,t} = \beta_0 + \beta_1 \Delta Control_{i,t} + \beta_2 Peace_t + \beta_3 (\Delta Control_{i,t} \times Peace_t) + \epsilon_i$

 $\begin{aligned} & \text{Deforest}_{i,t} \text{ Deforestation in grid cell (0/1, from IDEAM)} \\ & \text{Control}_{i,t} \text{ HMM Territorial control estimate (1 = gov. control)} \\ & \text{Peace}_t \text{ Peace agreement 2016 (0/1)} \end{aligned}$

$$N = 3,404 \ (I = 851,2013 - 2016)$$

DV: Deforestation dummy

[Bootstrapped standard errors clustered by grid cell.]

Discussion

HMMs are promising method to estimate territorial control.

tanders@usc.edu < => < 중> < 동> < 동> 문을 Therese Anders Territorial control in civil wars

Appendix

Therese Anders Territorial control in civil wars

★ E ▶ ★ E ▶ E = 9 < 0</p>

Hidden Markov Random Field (HMRF) model

3 5

Picture sources (in the order they appear)

Risk board game

https://www.flickr.com/photos/tambako/4598642399, licensed under CC BY-ND 2.0, accessed 16 July 2016.

- Nigeria map https://reliefweb.int/sites/reliefweb. int/files/resources/Nigeria_Boko_Haram_threat_ dec%202015.pdf.
- Ukraine http://www.kas.de/wf/en/33.48639/.
- Oeforestation https:

//www.flickr.com/photos/16725630@N00/1524189000/.

Most probable path for hidden state q_h at t:

$$v_t(h) = \max_{g=1}^N v_{t-1}(g)\theta_{gh}\phi_h(o_t)$$

[Maximum likelihood sequence of labels via argmax]

 $h \dots$ indexes current state $g \dots$ indexed previous state $v_{t-1}(g) \dots$ path probability of previous time step $\theta_{gh} \dots$ transition probability from q_g to q_h $\phi_h(o_t) \dots$ emission probability given h HMM returns path labels for maximum likelihood of observation sequence.

(*) *) *) *) *)

Observation	Latent variable
$\overline{E_{it}^{[T]} \approx E_{it}^{[C]} \approx 0}$ $C_{it} > T_{it}, \text{ and } C_{it} - T_{it} > m$	Full rebel control Incomplete rebel control
$ C_{it} - T_{it} < m$	Highly contested
$C_{it} < T_{it}$, and $ C_{it} - T_{it} > m$	Incomplete government control
$E_{it}^{[T]} pprox E_{it}^{[C]} pprox 0$	Full government control

- m = 0.025
- *T_{it}* = *P*([*E_{it}^[T]*]; λ_t^[T]) and *C_{it}* = *P*([*E_{it}^[C]*]; λ_t^[C]) are probabilities from a zero-inflated Poisson distribution.
- λ_t^[T] and λ_t^[C] denote expected number of events for each tactic in a given time period t across all areas I within a country.

帰▶ ∢ ≧▶ ∢ ≧▶ . 三日日 ∽ Q (^

Resampling grid cell locations

 C_1 1T, 0C: Tactics_{it} = D C_2 5T, 4C: Tactics_{it} = D C_3 0T, 0C: Tactics_{it} = A

Spatial decay functions

Sample parameter values for spatial logistic decay function

λ - 0.1 - 0.5 - 2.5 - 5 - 7.5

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Temporal decay functions

Sample parameter values for temporal logistic decay function

λ - 1 - 2.5 - 5 - - 7.5 - 10

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For each grid cell

- Compute terrorist exposure E^[T]_{it} and conventional exposure E^[C]_{it} to events K_j.
 - Spatial distance \longrightarrow spatial weight $w_{d_{ij}}$.
 - **2** Temporal distance \longrightarrow temporal weight $w_{a_{it}}$.

- Sompute $Tactics_{it} = f(E_{it}^T, E_{it}^C)$, $Tactics_{it} = \{A, B, C, D\}$.
- Setimate $Q = \{S1, S2, S3, S4, S5\}$ via HMM.

Transition probabilities are inspired by Kalyvas (2006).

	S1	S2	q_{t-1} S3	S4	S5
S1	0.250	0.500	0.025	0.200	0.025
S2	0.250	0.150	0.075	0.500	0.025
S3	0.050	0.025	0.050	0.850	0.025
S4	0.025	0.075	0.150	0.125	0.625
S5	0.050	0.075	0.475	0.025	0.375
	S1 S2 S3 S4 S5	S1S10.250S20.250S30.050S40.025S50.050	S1S2S10.2500.500S20.2500.150S30.0500.025S40.0250.075S50.0500.075	S1 S2 q_{t-1} S1 S2 0.025 S2 0.250 0.150 0.075 S3 0.050 0.025 0.050 S3 0.050 0.025 0.050 S4 0.025 0.075 0.150 S5 0.050 0.075 0.475	g1 g2 gt-1 S3 S4 S1 0.250 0.500 0.025 0.200 S2 0.250 0.150 0.075 0.500 S3 0.050 0.025 0.050 0.500 S4 0.025 0.025 0.050 0.850 S4 0.025 0.075 0.150 0.125 S5 0.050 0.075 0.475 0.025

(E)

ъ

The probability value in each cell of this matrix answers the following question: "Given that the true state of the grid cell at time t is, for example, S1, what is the probability of observing, for example, A from the data?"

			q_t		
	S1	S2	S 3	S4	S5
А	0.600	0.050	0.050	0.050	0.600
В	0.175	0.175	0.600	0.175	0.175
С	0.050	0.175	0.175	0.600	0.175
D	0.175	0.600	0.175	0.175	0.050
	A B C D	S1A0.600B0.175C0.050D0.175	S1S2A0.6000.050B0.1750.175C0.0500.175D0.1750.600	qt qt S1 S2 S3 A 0.600 0.050 0.050 B 0.175 0.175 0.600 C 0.050 0.175 0.175 D 0.175 0.600 0.175	qt qt S4 S1 S2 S3 S4 A 0.600 0.050 0.050 0.050 B 0.175 0.175 0.600 0.175 C 0.050 0.175 0.175 0.600 D 0.175 0.600 0.175 0.175

Three fundamental problems of HMMs

Likelihood Given transition probabilities θ and emission probabilities φ, what is the likelihood of the observation sequence O?

$$P(O) = \sum_{Q} P(O, Q) = \sum_{Q} P(O|Q)P(Q)$$

- Oecoding Given transition probabilities θ and emission probabilities φ as well as the observation sequence O, what are the most likely sequence of labels for hidden states Q?
- **Output Learning** Given the observation sequence O and the structure of the HMM, what are the best transition probabilities θ and emission probabilities ϕ ?

See Jurafsky, Daniel & James H. Martin (2017): Speech and Language Processing.

Why actors seek territorial control

- Collaboration of population [Arjona 2016, Kalyvas 2006]
- Extract resources

[Stewart and Liou 2017, Carter 2015]

Increase mobilization

[Stewart and Liou 2017, de la Calle and Sánchez-Cuenca 2015]

• Governance

[Stewart Forthcoming]

ACLED 8 Raleigh, Clionadh, Andrew Linke, Håvard Hegre and Joakim Karlsen. (2010). "Introducing ACLED-Armed Conflict Location and Event Data." *Journal of Peace Research* 47(5), 651–660.

- GED 17.1 Sundberg, Ralph, and Erik Melander, 2013, "Introducing the UCDP Georeferenced Event Dataset." *Journal of Peace Research 50*(4), 523-532.
- GTD 2016 National Consortium for the Study of Terrorism and Responses to Terrorism (START), 2016. Global Terrorism Database [Data file]. Retrieved from https://www.start.umd.edu/gtd.
 - IDEAM Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia. 2017. Cambio cobertura de bosque [Data file]. Retrieved from http://visor.ideam.gov.co.

ゆ くち くち くち くち くら

GED

- Considering only state-based conflict (disregarding violence between NSA and violence against civilians).
- Considering only events with sufficient accuracy (levels 1-3).

GTD

- Excluding events that are coded as doubtterr == 1.
- Considering only events with sufficient accuracy (levels 1–3).

Nigeria estimates

Yearly averages of monthly estimates of territorial control in NE Nigeria

ACLED validation

Table: The unit of analysis for territorial control is annual averages of monthly-level estimates for 0.25 degree hexagonal grid cells.

Statistic	Ν	Mean	St. Dev.	Min	Max
Control _{<i>i</i>,<i>t</i>}	3,404	0.9783	0.0755	0	1
$\Delta Control_{i,t}$	3,404	0.0062	0.0895	-1	1
Peacet	3,404	0.2500	0.4331	0	1
$Deforestation_{i,t}$	3,404	0.0496	0.2172	0	1

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @